Descent polynomials for permutations with bounded drop size
نویسندگان
چکیده
Motivated by juggling sequences and bubble sort, we examine permutations on the set {1, 2, . . . , n} with d descents and maximum drop size k. We give explicit formulas for enumerating such permutations for given integers k and d. We also derive the related generating functions and prove unimodality and symmetry of the coefficients. Résumé. Motivés par les “suites de jonglerie” et le tri à bulles, nous étudions les permutations de l’ensemble {1, 2, . . . , n} ayant d descentes et une taille de déficience maximale k. Nous donnons des formules explicites pour l’énumération de telles permutations pour des entiers k et d fixés, ainsi que les fonctions génératrices connexes. Nous montrons aussi que les coefficients possèdent des propriétés d’unimodalité et de symétrie.
منابع مشابه
Inversion-descent polynomials for restricted permutations
We derive generating functions for a variety of distributions of joint permutation statistics all of which involve a bound on the maximum drop size of a permutation π, i.e., max{i−π(i)}. Our main result treats the case for the joint distribution of the number of inversions, the number of descents and the maximum drop size of permutations on [n] = {1, 2, . . . , n}. A special case of this (ignor...
متن کاملDescents of Permutations in a Ferrers Board
The classical Eulerian polynomials are defined by setting An(t) = ∑ σ∈Sn t = n ∑ k=1 An,kt k where An,k is the number of permutations of length n with k − 1 descents. Let An(t, q) = ∑ π∈Sn t 1+des(π)qinv(π) be the inv q-analogue of the classical Eulerian polynomials whose generating function is well known: ∑ n>0 uAn(t, q) [n]q! = 1 1− t ∑ k>1 (1− t)kuk [k]q! . (0.1) In this paper we consider pe...
متن کاملDescent polynomials for kk bubble-sortable permutations of type B
Motivated by the work of Chung, Claesson, Dukes, and Graham in [5], we define a natural type B analog of the classic bubble sort, and use it to define a type B analog of the maximum drop statistic. We enumerate (by explicit, recursive, and generating function formulas) signed permutations with r type B descents and type B maximum drop at most k. We also find a connection between these signed pe...
متن کاملRevstack Sort, Zigzag Patterns, Descent Polynomials of $t$-revstack Sortable Permutations, and Steingrímsson's Sorting Conjecture
In this paper we examine the sorting operator T (LnR) = T (R)T (L)n. Applying this operator to a permutation is equivalent to passing the permutation reversed through a stack. We prove theorems that characterise t-revstack sortability in terms of patterns in a permutation that we call zigzag patterns. Using these theorems we characterise those permutations of length n which are sorted by t appl...
متن کاملOn the Real-Rootedness of the Descent Polynomials of (n-2)-Stack Sortable Permutations
Bóna conjectured that the descent polynomials on (n−2)-stack sortable permutations have only real zeros. Brändén proved this conjecture by establishing a more general result. In this paper, we give another proof of Brändén’s result by using the theory of s-Eulerian polynomials recently developed by Savage and Visontai.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 31 شماره
صفحات -
تاریخ انتشار 2010